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Abstract. Electron energy-loss experiments have shown a rapid softening of the bulk plasmon
dispersion across the series of the alkali metals. Motivated by these observations, we reconsider
the evaluation of the dynamic, long-wavelength exchange–correlation potentialfxc(ω) in the
electron fluid, which is of interest for applications in time-dependent density functional theory.
The value of Re[fxc(ωpl)] at the plasma frequencyωpl determines the exchange–correlation
contribution to the leading plasmon dispersion coefficient in the homogeneous electron fluid.
Whereas an interpolation scheme originally proposed by Gross and Kohn assumes a monotonic
increase of Re[fxc(ω) − fxc(0)] across the plasma frequency, we examine the possibility of
strongly non-monotonic behaviour arising from a resonance process between plasmons and two-
pair excitations. This process is evaluated with the help of sum rules and selfconsistency
requirements within a single-pole approximation for the dielectric function. The cases of
a fermion plasma and of a boson plasma are treated in parallel and the reliability of the
results for the fermion plasma at low coupling is tested by calculations within a random-phase
approximation for the dielectric function. In all cases it is found that the resonance process
accumulates oscillator strength in the neighbourhood of 2ωpl , thus decreasing the value of
Re[fxc(ωpl)] below the static valuefxc(0) fixed by the compressibility sum rule. Although this
lowering does not suffice to account by itself for the measured plasmon dispersion coefficient in
the low-density alkali metals, our results provide useful input for combined band-structure and
exchange–correlation calculations.

1. Introduction

From electron energy-loss experiments at high resolution vom Felde, Sprösser-Prou and
Fink [1] have reported new and accurate data on the plasmon excitation in the alkali metals
from Na to Cs. The dispersion relation

ωk = ωk=0 + αk2/m + Ck4 (1.1)

(h̄ = 1) can be fitted to their data up to the critical wave number for the onset of Landau
damping. Most interestingly the value of the leading dispersion coefficientα drops rapidly
through the series of metals, becoming essentially zero in Rb and negative in Cs. While such
behaviour ofα with decreasing electron density had been qualitatively predicted already in
theories of the homogeneous electron fluid developed since the late sixties [2], the observed
decrease is much more pronounced than in the corresponding theoretical results [3–7].

A number of attempts have been made to account for these observations [8–14]. By
an ad hocmatching of the coupling strength for degenerate electrons onto that of the one-
component classical plasma Kalmanet al [11] claimed that dynamic correlation effects in
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the homogeneous fluid can account for the observed softening of the plasmon dispersion.
Further evidence for this view has come from the work of Lippariniet al [13] evaluating
the plasmon contribution to the compressibility and f sum rules. In contrast Aryasetiawan
and Karlsson [14] have emphasized the role of band-structure effects within a random-phase
approximation (RPA) calculation, with special regard to the influence of low-lying d states
coming close to the Fermi surface in the heavier alkali metals. It can in fact be expected
that both correlation and band-structure effects are relevant for a quantitative account of the
observations. This view has been taken by Taut and Sturm [12], who have used local and
non-local density functional approaches within existing theories of exchange and correlation
to obtain a range of theoretical values ofα which extends down to the measured values.

Further clarification of the relevant dynamic mechanisms operating in the homogeneous
electron gas seems useful. To second order in the wave numberk the energy-loss
spectrum contains contributions from the plasmon and from single-pair as well as multi-pair
excitations. For frequenciesω comparable to or larger than the plasma frequencyωpl the
main multi-pair contributions arise from two-pair excitations. Starting with the pioneering
work of Dubois (see [15, 16]), these have been studied via perturbative methods by several
authors [17–23]. The inclusion of dynamic screening leads to a mode-coupling form of the
spectrum [18] and a similar expression has been obtained recently by Neilsonet al [24]
within a memory function formalism. A mode-coupling channel involves two plasmons
which in turn influence the behaviour of the plasmon excitation. Such two-plasmon effects
have recently been found to be important in the description of the energy loss of a charged
particle travelling through matter [25].

We present a study which elucidates this effect by calculating selfconsistently the
plasmon dispersion coefficient, the coupled modes being estimated within a single-pole
approximation (SPA) and selfconsistency being imposed via the compressibility and/or the
third-spectral-moment sum rule. We have found it useful to carry out calculations in parallel
for fermions and for bosons [26], since in the latter plasma the SPA appears to be less drastic
and further help can be found in the use of the sum rules to derive upper bounds. Our SPA
results for fermions at low coupling strength also find support in an RPA calculation of the
coupled modes.

The main output of our calculations is the whole spectrum of two-pair excitations
at orderk2, which in turn yields the dynamic exchange–correlation potentialfxc(ω) for
time-dependent density functional theory within the local density and linear response
approximations [27]. The result coming for this function from our essentially microscopic
approach shows a qualitatively different behaviour from the interpolation formula presented
by Gross, Kohn and Iwamoto (see [28–30]). In essence, the two-plasmon coupling
mechanism that we have evaluated accumulates oscillator strength in the two-pair spectrum
at frequencies in the neighbourhood of 2ωpl and this enforces a highly non-monotonic
dependence on frequency for the real part offxc(ω). In particular Re[fxc(ω)] at frequency
ωpl is more strongly attractive thanfxc(0).

2. General relations

The density–density response functionχ(k, ω) is related to the proper polarizability5(k, ω)

by

χ(k, ω) = 5(k, ω)

1 − vk5(k, ω)
(2.1)
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and to the local field factorG(k, ω) by

χ(k, ω) = χ0(k, ω)

1 − vkχ0(k, ω)[1 − G(k, ω)]
. (2.2)

Here,vk = 4πe2/k2 is the Fourier transform of the Coulomb potential andχ0(k, ω) stands
for the response function of non-interacting fermions or bosons [6, 31]. The RPA is
recovered by settingG(k, ω) = 0 or 5(k, ω) = χ0(k, ω).

Lipparini et al [13] have argued that, if5 is decomposed into single-pair (sp) and
multi-pair (mp) contributions, Im(1/5sp) coincides with Im(1/χ0) in the long-wavelength
limit. Using this, the following relations hold to leading order ink:

− Im G(k → 0, ω) ≈
(

1 − ω2

ω2
pl

)2

vk Im χmp(k, ω) ≈ ω4

ω4
pl

vk Im 5mp(k, ω). (2.3)

To the same order the limiting values of the local field factor are known exactly,G(k, 0)

from the compressibility sum rule andG(k, ∞) from the third-moment sum rule. They take
the form

G(k, 0) ' 2εk

ρω2
pl

(
1

K0
T

− 1

KT

)
(2.4)

and

G(k, ∞) ' −4εk

ω2
pl

(
2

15
εpot + εkin − ε0

kin

)
(2.5)

whereεk = k2/2m, ρ is the density,KT the isothermal compressibility andεpot (kin) the
potential (kinetic) energy per particle. The index 0 denotes ideal-gas values. The right-hand
sides of equations (2.4) and (2.5) can be evaluated from Monte Carlo data on the ground-
state energy and momentum distribution, which are available both for fermions [32, 33] and
for bosons [34].

We also recall that the quantity

fxc(ω) = − lim
k→0

vkG(k, ω) (2.6)

is the exchange–correlation potential entering time-dependent density functional theory in
the local density and linear response approximations [27]. Equations (2.6) and (2.3) show
that the imaginary part offxc(ω) is directly related to the multi-pair spectrum. A simple
formula for ImG(k, ω) incorporating low-frequency and high-frequency behaviours, which
implies a smooth interpolation between the two limits given in equations (2.4) and (2.5) for
ReG(k, ω), has been proposed by Gross, Kohn and Iwamoto (see [28–30]).

In the present work the imaginary part ofG(k → 0, ω) will be evaluated within suitable
microscopic approximations and its real part will be derived from it by means of Kramers–
Kronig relations [35], namely

ReG(k, ω) = G(k, ∞) + 1

π
P

∞∫
−∞

dω′ Im G(k, ω′)
1

ω′ − ω
(2.7)

or alternatively

ReG(k, ω) = G(k, 0) + 1

π
P

∞∫
−∞

dω′ Im G(k, ω′)
(

1

ω′ − ω
− 1

ω′

)
(2.8)
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(P denotes the principal value). Noa priori assumptions will be made on the value of
ReG(k → 0, ωpl), which determines the plasmon dispersion coefficientα via

ReG(k → 0, ωpl) = (αRPA − α)
2k2

mωpl

. (2.9)

The dispersion coefficientαRPA in the RPA is zero for bosons and equals 3εF /5ωpl for
fermions,εF being the Fermi energy.

3. The multi-pair spectrum

In the limit of smallk and finiteω Hasegawa and Watabe [18] (HW) derived for the two-pair
excitations the result

Im G(k, ω) = εk

πρω2
p

ω∫
0

dω′ ∑
q

Im vqχ(q, ω − ω′)

×
[

23

15
Im vqχ(q, ω′) + 16

15

q2

ω2
Im vqχT (q, ω′)

]
(3.1)

where the response functions are those of the RPA. The transverse functionχT (k, ω) in
the RPA is defined in appendix A (equation (A.11) ). There we also discuss in detail the
phenomenological inclusion of exchange effects that we have adopted in this work.

Evidently the excitations at frequencyω′ are coupled in equation (3.1) with those
at frequencyω − ω′, implying a plasmon–plasmon contribution in parallel with channels
involving single-particle excitations and transverse currents. Starting with a positive value
of the dispersion coefficientα in the electron fluid at weak coupling, from the structure
of equation (3.1) a peak must be expected in ImG(k → 0, ω) at around twice the plasma
frequency. The oscillator strength there must increase with increasing coupling as the
plasmon dispersion curve flattens out and the resonance spreads over a wider region of
q-space. Thus, as the value ofα moves towards zero, an increasingly rapid drop ofα is to
be expected. The peak may then move towards lower frequencies onceα attains negative
values.

Before we proceed to an explicit demonstration of such dynamic behaviour via a simple
model incorporating the selfconsistency on the value ofα which is implied by the argument
given above, we remark that the theoretical approach developed recently by Neilsonet
al [24] (NSSS) for the two-dimensional electron gas leads to similar conclusions by an
alternative route. While the HW derivation of equation (3.1) was based on the study of
the equations of motion for Green’s functions, NSSS evaluate the dynamic response on
the basis of Mori’s memory function formalism. As a first step the single-particle memory
function in their result may be neglected, yielding for the imaginary part of the local field
factor the expression

Im G(k, ω) = 1

πρmω2
plk

2

ω∫
0

dω′∑
q

v̄q(q · k) Im χ(q, ω′)

×Im χ(k − q, ω − ω′)
[
v̄q(q · k) + v̄k−q(k

2 − q · k)
]
. (3.2)

Here v̄k is a statically screened potential of the STLS type [2]. The coupled-mode structure
of the dynamic local field factor is again evident from equation (3.2), although the transverse
response function entering equation (3.1) is missing (see appendix A).
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Selfconsistency is built into the calculations that we present immediately below by
evaluating the first contribution in equation (3.1) within the SPA,

vk Im χ(k, ω) = −πω2
pl

2ωk

[δ(ω − ωk) − δ(ω + ωk)] . (3.3)

Dropping the transverse term in the square brackets in equation (3.1), this equation simplifies
to

Im G(k, ω) = 23

15

πεk

(2π)3ρ

∫
d3q δ

(
ω − 2ωq

) ω2
pl

ω2
. (3.4)

Since we are mainly interested in the plasmon dispersion at smallk, we transcend the RPA
at the same time by adopting for the mode frequencyωk in equation (3.3) the expression

ωk =
√

ω2
pl + 4αεkωpl + ε2

k . (3.5)

This interpolates between small- and large-k behaviours while it allows us to keep
selfconsistent account of the dispersion coefficientα. We also remark that for the degenerate
plasma of bosons a single-mode description of the density response function is the outcome
of a vast class of Feynman-like theories [36].

We may also make a clear comparison between the NSSS and the HW results if we
replace in equation (3.2) the statically screened potential by the bare potential. Using the
SPA we then find in thek → 0 limit

Im G(k, ω) = 7

15

πεk

(2π)3ρ

∫
d3q δ

(
ω − 2ωq

) ω2
pl

ω2
(3.6)

which agrees with the HW expression in equation (3.4) apart from the prefactor. Whereas
the HW expression gives the correct perturbational limit derived by Glick and Long [19],
the NSSS approach globally includes multi-pair effects to all orders. Neither of the two
prefactors seems obviously superior to the other (cf. appendix A).

Figure 1. The selfconsistent plasmon dispersion coefficientα for bosons as a function ofrs .
(a) HW; (b) NSSS.
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4. Plasmon dispersion

In this section we apply the results obtained above to the selfconsistent evaluation of the
plasmon dispersion coefficient. Using equation (3.5) in the expressions for the imaginary
part ofG(k, ω) given by either equation (3.4) or equation (3.6), the real part ofG(k, ω) can
be obtained via one of the two Kramers–Kronig relations given in equation (2.7) or equation
(2.8). One may then compute the dispersion coefficientα from equation (2.9) and hence
return to a better estimation of the single-mode frequency in equation (3.5). Evidently, we
do have a set of equations to be solved selfconsistently, but with possible alternative choices
for the strength of the multi-pair spectrum (the prefactor in equations (3.4) and (3.6)) and
for the sum rule to be satisfied (equations (2.7) and (2.8)).

Table 1. The plasmon dispersion coefficientα for bosons as a function ofrs , using different
models.

rs αV S αYas αGK αIG αK3

0.1 −0.006 44 0.003 25 — −0.002 59 −0.007 94
1 −0.0362 0.0140 — −0.0177 −0.0445
2 −0.0608 0.0182 −0.0608 −0.0335 −0.0746
3 −0.0822 0.0191 −0.0822 −0.0490 −0.1010
4 −0.1018 0.0181 −0.1017 −0.0643 −0.1253
5 −0.1200 0.0159 −0.1199 −0.0793 −0.1483
6 −0.1372 0.0129 −0.1370 −0.0939 −0.1705

10 −0.199 −0.003 −0.198 −0.149 −0.258
12 −0.226 −0.012 −0.225 −0.174 −0.318
15 −0.264 −0.027 −0.263 −0.211 —
20 −0.322 −0.050 −0.320 −0.266 —

We examine below the results given by all these alternatives and also present what
we believe to be the best result within our approximate approach. This is obtained by
introducing a further parameterβ as an overall multiplicative factor for the imaginary part
of the local field factor. We are then enabled to carry out a fully selfconsistent evaluation of
both α andβ by imposing the conditions that both the third-moment sum rule in equation
(2.7) and the compressibility sum rule in equation (2.8) must be exactly satisfied.

Table 2. The plasmon dispersion coefficientα for fermions as a function ofrs , using different
models.

rs αV S αYas αGK αIG αK3

0.1 1.998 68 2.007 37 2.000 71 2.001 80 1.998 16
1 0.5768 0.6164 0.5791 0.5884 0.5731
2 0.362 0.426 0.364 0.380 0.355
3 0.256 0.340 0.259 0.279 0.246
4 0.187 0.288 0.189 0.214 0.174
5 0.135 0.252 0.137 0.165 0.119
6 0.093 0.223 0.096 0.125 0.074

10 −0.026 0.150 −0.023 0.014 −0.057
12 −0.070 0.124 −0.067 −0.028 −0.108
15 −0.127 0.092 −0.123 −0.082 −0.179
20 −0.206 0.049 −0.201 −0.157 −0.320
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Figure 2. The selfconsistent plasmon dispersion coefficientα/αRPA for fermions as a function
of rs . Also included are the experimental results obtained by vom Feldeet al [1] (lozenges).
(a) HW; (b) NSSS.

The results for the plasmon dispersion coefficientα at selfconsistency are shown in
tables 1 and 2 and in figures 1 and 2. The notation used in these figures is as follows:

(i) KT denotes a calculation in whichα is determined with either the HW or the NSSS
choice for the prefactor by satisfying the compressibility sum rule (2.8), thus attributing
greater relevance to the low-frequency part of the spectrum;

(ii) 3M denotes a calculation in whichα is determined with either the HW or the NSSS
choice for the prefactor by satisfying the third-moment sum rule (2.7), thus attributing
greater relevance to the high-frequency part of the spectrum;

(iii) K3 denotes a calculation in whichα andβ are determined by satisfying both sum
rules. Evidently, the difference between HW and NSSS results disappears. In the relevant
density range (rs ∼ 2–15) we find thatβ/β

HW
is a decreasing function ranging from 2 to

0.5.

Our results in figures 1 and 2 are also compared with those obtained by neglecting the
imaginary part of the local field factor (i.e. takingβ = 0) and settingG(k, ωpl) equal either
to G(k, 0) or to G(k, ∞). The former was done by Vashishta and Singwi [3] and yields an
upper bound on bothKT andK3. The latter was done by Suehiroet al [37] and yields an
upper bound on both 3M andK3. We use the notation VS and Yas for the corresponding
results both for bosons and for fermions, as obtained from the Monte Carlo equation of
state. Tables 1 and 2 report these numerical values for the dispersion coefficient at various
values ofrs , together with those computed from the Gross–Kohn (GK) and the Iwamoto–
Gross (IG) local field correction and with those that we obtain in our ‘best’ selfconsistent
calculation (indicated asαK3). Of course, the GK and IG values lie between the Yas and
the VS results. The limited accuracy of the fits to Monte Carlo data involved in these
evaluations [34, 38] is likely to affect the last significant figure in the numerical values of
α reported in these tables.

Figure 1 shows the behaviour ofα as a function ofrs for bosons. In all approaches
except the Yas one,α is negative throughout the whole density range. It has recently been
shown from sum rule arguments that the VS result provides an exact upper bound on the
plasmon dispersion coefficient in the degenerate plasma of bosons [39]. Our best result,
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given by the full curve in figure 1, correctly lies below this upper bound. The steep drop of
α at rs ∼ 12 is due to a breakdown of the SPA as we discuss below in the case of fermions.

Figure 2 reports the behaviour ofα/αRPA as a function ofrs for fermions. All our results
show a rapidly increasing drop in the plasmon dispersion coefficient with increasingrs and
again our best result lies below the VS result at all values ofrs . This behaviour arises from
the mutual repulsion between the single-plasmon excitation and the two-pair excitations,
with the spectrum of the latter starting within the SPA at twice the minimum frequency
ωmin in the single-mode dispersion curve. This repulsion increases with decreasing energy
difference (i.e. at smallerα) and with increasing oscillator strength in the low-frequency
part of the two-pair spectrum (again at smallerα). Therefore, the selfconsistent iterations
in α lead to a rapid softening of the plasmon as is seen in figure 2. Evidently the SPA
breaks down at a density such thatωmin reachesωpl/2, where the decay of a plasmon into
two modes atkmin and−kmin would become possible.

Finally, figure 2 also reports the measured values ofα/αRPA in the four alkali metals
from Na to Cs [1]. It is clear that the plasmon softening mechanism that we have evaluated
is still insufficient to account for these observations by itself.

5. The dynamic exchange–correlation potential for fermions

Having obtained a selfconsistent solution forα we are now able to discuss the frequency
dependence of the local field factor at long wavelength, i.e. of the exchange–correlation
potentialfxc(ω) defined in equation (2.6). We shall do this with the main attention focused
on fermions in theK3 approach, which is fully consistent and ensures the correct limiting
behaviours of Refxc(ω) at both high and low frequency according to equations (2.7) and
(2.8).

(a) (b)

Figure 3. Real and imaginary parts offxc(k, ω) at smallk in units of 2ωpl/ρ, as functions of
ω/ωpl from the SPA for fermions atrs = 1 (a) andrs = 10 (b). The asymptotic behaviours are
shown by the dashed lines.

It is easily seen that Imfxc(ω) decreases asω−3/2 for largeω. As a consequence of the
SPA it vanishes at frequencies below 2ωmin. For positiveα a continuous function with an
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infinite right-hand-side derivative at 2ωmin is obtained (figure 3(a)), whereas for negativeα

a divergence of the type(ω − 2ωmin)
−1/2 is found (figure 3(b)). This in turn leads to a cusp

in Refxc(ω) for positiveα and to a singularity of the type(2ωmin−ω)−1/2 θ(2ωmin−ω) if α

is negative (figure 3). In all cases Refxc(k, ω) at low frequency lies below the valuefxc(0)

given by the compressibility sum rule and the limiting valuefxc(∞) corresponding to the
third moment is reached from above. While the above-mentioned singularities at 2ωmin are
consequences of the SPA, singularities in the two-pair spectrum at 2ωpl arise even in the
RPA (see below).

The behaviour offxc(ω) shown in figure 3 is qualitatively different from the results of
Gross, Kohn and Iwamoto (see [28–30]), who proposed a smooth and essentially monotonic
interpolation between the static and the high-frequency limits. The question arises of
whether or not the pronounced structure that we find in the frequency dependence of
Refxc(ω) is an artifact of our model and in particular of the SPA.

As we have recalled in section 4, in the case of bosons an upper bound on the plasmon
dispersion coefficient has been demonstrated from an exact sum rule argument [39] and it
coincides with the VS result. Consequently Refxc(ωpl) must lie belowfxc(0), implying
the presence of a minimum at finiteω sincefxc(∞) lies abovefxc(0). A structure in the
frequency dependence of Refxc(ω) of the type that we have found is thus correct for the
boson plasma at all couplings.

No such exact statement can be made at present for fermions. An independent, though
still approximate assessment of the quality of the SPA results can be made at weak coupling
by evaluatingfxc(ω) from the original HW formula in equation (3.1), using the RPA
expressions for the linear response functions appearing there.

5.1. The RPA calculation of the exchange–correlation potential

We have already seen from equation (3.1) thatfxc(ω) involves a density–density (dd)
contribution and a density–transverse-current (dt) contribution. We focus first on the dd
term and shall later evaluate the dt term. For a meaningful quantitative comparison with
the SPA and IG/GK results we shall rescale the final RPA and SPA curves so as to ensure
consistency with both the compressibility and the third-moment sum rule. For the same
reason the SPA curves use the RPA value of the dispersion coefficientα, rather that the
selfconsistent one.

From the RPA expression for the density response functionχ(k, ω), the dd term
involves plasmon–plasmon (pp), plasmon–continuum (pc) and continuum–continuum (cc)
components. Figure 4(a) reports these three separate components as evaluated atrs = 1, as
well as their sum (full curve) yielding the dd contribution to the imaginary part offxc(ω).
The individual components show singularities atωc and 2ωc, ωc being the frequency where
the plasmon dispersion curve crosses the edge of the single-pair continuum. However, these
singularities cancel away in the sum. On the other hand, the singularities atωpl and 2ωpl

arise from real phase-space effects and are present in the components as well as in their
sum. Appendix B gives an analytic treatment of the singularity which is brought by the pp
spectral component into the real part of the exchange–correlation potential at 2ωpl .

The above RPA result for the two-pair spectrum is compared with the SPA result in
figure 4(b). The main difference is that, while the SPA spectrum vanishes at frequencies
below 2ωpl , the cc and pc components of the RPA spectrum do not. However, their spectral
weight is quite small in this frequency range, since the cc and pc two-pair excitations involve
single-pair excitations and these have low oscillator strength at low frequencies. This fact
is explicitly illustrated in figure 5, reporting the momentum-integrated oscillator strength of
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Figure 4. The imaginary part offxc(ω), in units of 2ωpl/ρ, as a function ofω/ωpl at rs = 1.
(a) The dd spectrum (full curve) and its components in the RPA; (b) the dd spectrum in the
RPA compared with the SPA and IG spectra, after rescaling to satisfy the compressibility and
third-moment sum rules.

Figure 5. The momentum-integrated oscillator strength atrs = 1 as a function ofω/ωpl in
the RPA (full curve) and SPA (dotted curve). The two dashed curves give the plasmon and
continuum contributions to the RPA result.

the density-fluctuation spectrum,

OS(ω) =
∫

d3k ωvk Im χ(k, ω) (5.1)

in the RPA and in the SPA atrs = 1. Figure 4(b) also reports the IG result for the two-pair
spectrum, showing that it places a large part of the spectral weight at low frequencies.

After Kramers–Kronig transform the results in figure 4 yield the dd contribution to the
real part offxc(ω) as reported in figure 6. The full RPA curve exhibits a sharp spike at
2ωpl , just as the SPA does (see appendix B). Owing to the presence of oscillator strength for
two-pair excitations below 2ωpl in the RPA calculation, its value for the plasmon dispersion
coefficient is somewhat smaller than in the SPA if the same inputα is used. It is also evident
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Figure 6. The real part offxc(ω), in units of 2ωpl/ρ, as a function ofω/ωpl at rs = 1. (a) The
dd result (full curve) and its components in the RPA; (b) the dd result in the RPA compared
with the SPA and IG results, after rescaling to satisfy the compressibility and third-moment sum
rules.

Figure 7. The imaginary part offxc(ω), in units of 2ωpl/ρ, as a function ofω/ωpl at rs = 1.
(a) The contributions to the RPA spectrum; (b) the RPA spectrum compared with the SPA and
IG spectra, after rescaling to satisfy the compressibility and third-moment sum rules.

from figure 6(b) that the IG result has an entirely different dependence on frequency in the
intermediate region between the same low- and high-frequency limits. While the results
of an RPA calculation can be relied upon only at low coupling strength, calculations that
we have carried out atrs = 10 yield conclusions similar to those emerging from figures 4
and 6. Of course, the pp channel becomes relatively more important with increasing coupling
strength.

We finally turn to an RPA evaluation of the dt contribution tofxc(ω). When retardation
is neglected (c → ∞) the transverse response function entering equation (3.1) reduces in the
RPA to the transverse response function of the ideal Fermi gas [40]. Explicit expressions
for the latter are given in appendix C. On inserting these in equation (3.1) it is evident
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that the dt contribution involves two components, i.e. (i) a ct component arising from a
single-pair density excitation and a single-pair transverse excitation and (ii) a pt component
arising from a plasmon and a single-pair transverse excitation. Figure 7(a) reports these
components of the two-pair spectrum atrs = 1 and compares the total result for the two-pair
spectrum in the RPA (the full curve labelled RPA) with the result obtained in figure 4(a)
for the dd channel. The total RPA result is compared with the SPA result and with the IG
result in figure 7(b). The corresponding results for the real part of the exchange–correlation
potential are shown in figure 8.

Figure 8. The real part offxc(ω), in units of 2ωpl/ρ, as a function ofω/ωpl at rs = 1. (a) The
contributions to the RPA results; (b) the RPA result compared with the SPA and IG results, after
rescaling to satisfy the compressibility and third-moment sum rules.

The main consequences of including the dt channel in the two-pair spectrum arise in
the low-frequency region. In particular, in the limitω → 0 the dt component of the RPA
two-pair spectrum is linear inω, just as the IG result is, though with a very different slope
(see figure 7(b)). In the same limit the dd component is instead proportional toω3, the
difference by a factorω2 being evident e.g. from equation (A.8). The oscillator strength
residing in the transverse excitations at low frequency induces through the pt component
some structure in Refxc(ω) in the region of the plasma frequency, as can be seen from
figure 8.

6. Concluding remarks

In summary, we have presented a selfconsistent model to describe the effects of two-pair
excitations on plasmon dispersion and on the shape of the dynamic local field factor for
exchange and correlation at small wave number. A pronounced structure is found in the
frequency dependence of the real part of the local field factor, even at small values of
rs where the plasmon dispersion coefficient is still positive. In the region of coupling
strength where the single-mode approximation made in our calculations can be expected to
be reasonably close to correctness, our results for the selfconsistently determined dispersion
coefficient show rapid softening of the plasmon excitation. Since the real part of the
exchange–correlation potential is more strongly attractive at the plasma frequency than at
zero frequency, future inclusion of band-structure effects for alkali metals by means of
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time-dependent density functional theory may we hope provide a fully satisfactory account
of the existing observations.

Appendix A. Multi-pair excitations to lowest order

The two-pair contribution to the imaginary part of the proper polarizability of fermions
was first derived by diagrammatic means by Glick and Long [19] to lowest order in the
interactionvk. Introducing the function

X(q, p, p′, k)

= θ(kF − p) θ(|p + k − q| − kF )θ(kF − p′) θ(|p′ + q| − kF )

×δ
(
mω + ( p − p′)·q + (q − p)·k − 1

2k2 − q2
)

(A.1)

with kF the Fermi momentum, their result can be cast into the form

Im 52P 0(k, ω)

= − πm3

2

∑
σ,σ ′

∑
q,p,p′

X(q, p, p′, k)
[
A(q, p, k) + A(k − q, p′, k)

]
×
{[

A(q, p, k) + A(k − q, p′, k)
]

− δσ,σ ′
[
. . . (exch) . . .

]}
. (A.2)

Here, the functionA is defined as

A(q, p, k) = vq q · k[
mω − ( p + 1

2k) · k
] [

mω − (p − 1
2(k + q)) · k

] . (A.3)

Obviously the terms headed byδσ,σ ′ describe exchange effects. Their explicit form is not
required here, since they can be accounted for by physical arguments (cf. below). It is further
to be noticed that the symmetry of the integrand in equation (A.2) allows the replacement
of the first bracket by 2A(q, p, k).

Equation (A.2) is valid for arbitrary values of(k, ω) outside the particle–hole continuum.
In the limit of high frequency and finite wave vector the restriction ofp andp′ to the Fermi
sphere implies that

X(q, p, p′, k) ≈ θ(kF − p)θ(kF − p′) δ
(
mω − q2

)
(A.4)

and

A(q, p, k) ≈ vq q · k

(mω)2

[
1 − q · k

mω
+ . . .

]
. (A.5)

From these relations it follows [19] that

vk Im 5(k, ω → ∞) = −23π

80

(
k

kF

)2
(ωpl/2εF )6

(ω/2εF )11/2
. (A.6)

The contribution to equation (A.6) due to exchange cancels one half of the direct result.
This can be understood in the following way. Although the Fermi functions inX ensure
that excitations only occur from occupied to empty states, they do not enforce different
spins for particles having equal momenta. This case arises for energy transfers which are
large in comparison with the Fermi energyεF and reduces the allowed phase space by a
factor 1/2. In the opposite limit of smallω, excitations take place on the Fermi surface.
Here, the processes involving identical final momenta are a vanishing fraction of all possible
transitions and the functionX correctly describes the available phase space.
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The main effect of the exchange contributions thus is to modifyX by a factor ranging
from 1 to 1

2 for frequencies ranging fromω � εF to ω � εF . This can be conveniently
accounted for by introducing a simple functionf (ω), whose specific form is found to have
only a minor influence on the results. We suggest using

f (ω) = 1 + (ω/2εF ) + 0.5(ω/2εF )2

1 + (ω/2εF ) + (ω/2εF )2
. (A.7)

This function is understood to be included, together with the usualV −1, in theq-summation
for fermions in both the following equations of this appendix and in equations (3.1)–(3.4)
and (3.6) in the main text, without being explicitly written.

If equation (A.2) is expanded to lowest order ink (i.e. for k2 � mω) one obtains the
result [21]

Im vk 52P 0(k → 0, ω) = −π

2

k2ω2
pl

ρω4

∑
q,p,p′

X(q, p, p′, 0)v2
q

{
23

15
+ 16

15

(q pT

m ω

)2
}

(A.8)

wherepT denotes a transverse component of the wave vector (p2 = 2p2
T + ( p · q/q)2).

Equation (A.8) was originally derived by Hasegawa and Watabe [18] using Green’s function
methods. In addition they suggested including dynamic screening by decoupling the highest-
order propagator into the product of pair propagators, leading to the result given in equation
(3.1) of the main text. Noting that

π

2
X(q, p, p′, k) =

ω∫
0

dω′

2π
Im χ0

p(k − q, ω − ω′) Im χ0
p′(q, ω′) (A.9)

in terms of elementary ideal-gas processes of single-particle excitation, one can immediately
identify the second term in the brackets in equation (A.8) as arising from the transverse free
response function. This is related to the RPA transverse dielectric function [40] via

εRPA
T (k, ω) = 1 − 4πe2

ω2

[
χ0

T (k, ω) + ρ

m

]
(A.10)

with

χ0
T (k, ω) =

∑
p,σ

p2
T

m2
χ0

p,σ (k, ω). (A.11)

This term does not contribute to the high-frequency limit, as is obvious from equation (A.8).
Finally, we remark that approximating the functionA in equation (A.2) by its high-

frequency form given in equation (A.5) and additionally neglecting theq · k/mω term
leads to

Im vk5
2P 0(k, ω)

≈ − ω2
pl

ρmω4k2

ω∫
0

dω′

π

∑
q

Im χ0(k − q, ω − ω′) Im χ0(q, ω′)

×vq (q · k)
[
vq (q · k) + vk−q (k2 − q · k)

]
. (A.12)

This expression has the form proposed by Neilsonet al [24], the absence of transverse
contributions being consistent with the large-ω assumption. On the other hand, as remarked
in section 5.1 the low-frequency behaviour is dominated by the transverse contribution.

For small wave number, equation (A.12) leads to replacing the prefactor 23/80 in
equation (A.6) by the value 7/80. Thus the correct lowest-order result is not reproduced
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by the NSSS. However, it is nota priori obvious that higher-order multi-pair excitations
should not affect this factor. Therefore, such a modification of the Glick–Long limit, which
still preserves the correct functional dependence of the typek2/ω−11/2, seems acceptable.

Appendix B. The singularity in Re fxc(ω) at 2ωpl

In this appendix the non-smooth (non-C1) terms in Refxc(ω) around 2ωpl are evaluated
analytically in the case whereα > 0. It is also verified that the result agrees with the
numerical evaluation reported in the main text. In the case whereα < 0 a behaviour of the
type (ω − ωpl)

−1/2 is easily derived as pointed out in section 5.
The non-smooth contribution to Imfxc(ω) due to the two-plasmon channel is

Im fxc(ω ∼ 2ωpl) ∝ θ(ω − 2ωpl)
√

ω − 2ωpl (B.1)

apart from an overall negative constant factor. The real part is obtained by Kramers–Kronig
transformation:

Re
[
fxc(ω) − fxc(∞)

] =
∫

dω′

π

Im fxc(ω
′)

ω′ − ω
. (B.2)

The only singular contributions arise forω′ = 2ωpl , so neglecting smooth terms the
integration range can be limited to [2ωpl, 2ωpl + 1]. By making the changes of variable
ω′ = 2ωpl + x andω = 2ωpl + y the integral can be put into the form∫ 2ωpl+1

2ωpl

dω′
√

ω′ − 2ωpl

ω′ − ω
=
∫ 1

0
dx

x1/2

x − y
. (B.3)

To obtain the non-smooth contributions the above integral has to be evaluated for both
positive and negativey.

If y > 0, i.e. forω > 2ωpl , we have∫ 1

0

x1/2

x − y
dx = 211/2 − y1/2 ln

∣∣∣∣y1/2 + 11/2

y1/2 − 11/2

∣∣∣∣ ' 211/2 − 2

11/2
y (B.4)

while if y < 0, i.e. forω < 2ωpl we have∫ 1

0

x1/2

x − y
dx = 211/2 − 2|y|1/2 tan−1

(
11/2

y1/2

)
' 211/2 − π |y|1/2 − 2

11/2
y. (B.5)

We thus conclude that a singular term is present only on the left of the singularity and is
proportional to−θ(2ωpl − ω)

√
2ωpl − ω.

Recovering the multiplicative constant this result can also be put in the form

Refxc(2ωpl − δ) = − Im fxc(2ωpl + δ) + smooth function (class C1). (B.6)

This is compared in figure A1 with the result of the numerical evaluation of Refxc(ω) within
the SPA, the smooth function being represented by a straight line fitted to the numerical
result atω > 2ωpl .

Appendix C. The transverse response function of the ideal Fermi gas

The transverse equivalent of the Lindhard response function is given by

Im χ0
T (k, ω) = π

∫
F

d3q

(2π)3

q2
T

m2

[
δ

(
ω − (k + q)2

2m
+ q2

2m

)
− δ

(
ω + (k + q)2

2m
− q2

2m

)]
(C.1)
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Figure A1. Refxc(ω) as obtained numerically around 2ωpl at rs = 1 in the SPA (dotted curve),
compared with the singular behaviour given in equation (B.6) added to a straight line (full
curve).

where the integration domainF is the Fermi sphere [40]. By performing the integration
we get

Im χ0
T (k, ω) = − ω

16πk3

(
4k2kF

2 − k4 − 4m2ω2
)

(C.2)

for 0 < ω < (2kkF − k2)/2m and

Im χ0
T (k, ω) = − 1

256πmk5

(
k4 − 4k2k2

F − 4k2mω + 4m2ω2
)2

(C.3)

for |2kkF − k2|/2m < ω < (2kkF + k2)/2m. The imaginary part of the transverse response
function is zero elsewhere.

The Kramers–Kronig transform of the result in equations (C.2) and (C.3) yields

Reχ0
T (k, ω) = kF

96π2mk2

(
3k4 − 20k2kF

2 + 36m2ω2
)+

+ 1

256π2mk5

(
k4 − 4k2kF

2 + 4k2mω + 4m2ω2
)2

ln

∣∣∣∣ω + k2/2m − kkF /m

ω + k2/2m + kkF /m

∣∣∣∣
+ 1

256π2mk5

(
k4 − 4k2k2

F − 4k2mω + 4m2ω2
)2

ln

∣∣∣∣ω − k2/2m + kkF /m

ω − k2/2m − kkF /m

∣∣∣∣ .
(C.4)
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[21] Bachlechner M E, Macke W, Miesenböck H M and Schinner A 1991PhysicaB 168 104
[22] Gasser W 1992PhysicaB 183 217
[23] Bachlechner M E, B̈ohm H M and Schinner A 1993Phys. Lett.178A 186
[24] Neilson D, Swierkowski L, Sj̈olander A and Szymanski J 1991Phys. Rev.B 44 6291
[25] Pitarke J M and Ritchie R H 1994Nucl. Instrum. MethodsB 90 358
[26] We still use the expression ‘multi-pair’ instead of ‘multi-particle’ excitations for the degenerate plasma of

bosons, with the understanding that the holes are left in the condensate.
[27] Gross E K U andKohn W 1990Adv. Quant. Chem.21 255
[28] Gross E K U andKohn W 1985Phys. Rev. Lett.55 2850
[29] Gross E K U andKohn W 1986Phys. Rev. Lett.57 923
[30] Iwamoto N and Gross E K U 1987Phys. Rev.B 35 3003
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